Tin Difluoride-Arsenic Pentafluoride (1:1)

By Luubo Golič and Ivan Leban
Chemistry Department, University of Ljubljana, 61000 Ljubljana, Yugoslavia

(Received 6 July 1976; accepted 15 August 1976)

Abstract

SnF}_{2}\). AsF ${ }_{5}$, F.W. 326.6, rhombohedral, space group $R 32$ [hexagonal axes, $a=9.123$ (2), $c=16.983$ (5) \AA] $, V=1224.3 \AA^{3}, D_{x}=3.986 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=9$, at $20(1)^{\circ} \mathrm{C}$. The structure consists of discrete cyclic $(\mathrm{Sn}-\mathrm{F})_{3}^{3+}$ cations and octahedral AsF_{6}^{-}anions arranged along threefold axes. The final R value was 0.039 for the 292 reflexions used in the analysis.

Introduction. Tin difluoride, SnF_{2}, reacts with the strong fluoride-ion acceptor arsenic pentafluoride, AsF_{5}, to give a $1: 1$ complex. On the basis of its vibrational and ${ }^{119}$ Sn Mössbauer spectra, this compound was formulated as a salt of the polyfluoro cation $(\mathrm{Sn}-\mathrm{F})_{n}^{n+}$ with $n \mathrm{AsF}_{6}^{-}$anions as counterions (Birchall, Dean \& Gillespie, 1971). It has also been suggested that there is some covalent interaction between these ions (Gantar, 1975). Therefore, the crystal structure of this $1: 1$ complex was investigated to determine the geometry of the $(\mathrm{Sn}-\mathrm{F})_{n}^{n_{+}}$cation and the possible distortions of the octahedral AsF_{6}^{-}groups due to covalent interactions. It is of interest to compare this structure with that of XeRuF_{7}, which contains discrete XeF^{+}and RuF_{6}^{-}species (Bartlett, Gennis, Gibler, Morrell \& Zalkin, 1973).

Crystals suitable for X-ray analysis were obtained by D. Gantar, J. Stefan Institute, Ljubljana, Yugoslavia, and J. H. Holloway, Department of Chemistry, The University, Leicester, England, by reacting SnF_{2} with excess AsF_{5} in anhydrous HF at room temperature. The detailed method of preparation will be published elsewhere. Since the compound is highly sensitive to moisture, a crystal of nearly spherical shape (average radius 0.026 cm) was sealed in a ca 0.5 mm quartz capillary. The systematically absent reflexions ($h k l$: $-h+k+l=3 n$) on precession photographs and the acentric distribution of $|E|$ values $\left(\left\langle E^{2}\right\rangle=1.000 ;\langle | E^{2}-1| \rangle=0.746 ;\langle | E| \rangle=0.879\right)$ indicate the space group $R 32$ (No. 155, hexagonal setting), which had also been implied by the Patterson function and was borne out by the structure analysis. Unit-cell dimensions were obtained from a leastsquares fit of the 2θ values of 15 high-order reflexions measured on a CAD-4 diffractometer, with Mo $K \alpha_{1}$ radiation, $\gamma=0.70926 \AA, t=20(1)^{\circ} \mathrm{C}$. The value $Z=$ 9 was deduced assuming a close-packed fluoride lattice, the effective volume per fluorine atom being $19.4 \AA^{3}$
(Zachariasen, 1948). Intensity data were collected on an automatic computer-controlled Enraf-Nonius CAD-4 four-circle diffractometer by an $\omega-2 \theta$ scan technique with a variable scan rate. Details of both data collection and reduction are shown in Table 1.

The data were corrected for variation in standards, Lorentz and polarization effects, and absorption, assuming the crystal to be a sphere. For the θ range covered and for $\mu R=2.9, A^{*}$ varied from 35.0 to 21.1 (International Tables for X-ray Crystallography, 1959).

The position of the Sn atom was deduced from a Patterson map. All the remaining atoms were revealed in a subsequent electron density map phased on Sn . The structure refinement was by full-matrix least squares, minimizing the function $\Sigma w\left(F_{o}-F_{c}\right)^{2}$, where the weighting function was determined empirically: $w=w_{F} w_{S}$, where $w_{F}\left(\left|F_{0}\right|<75 \cdot 0\right)=\left(\left|F_{o}\right| / 75 \cdot 0\right)^{1 / 2}$, $w_{F}\left(\left|F_{o}\right|>150 \cdot 0\right)=\left(150 \cdot 0 /\left|F_{o}\right|\right)^{4}, w_{F}\left(75 \cdot 0<\left|F_{0}\right|<\right.$ $150.0)=1.0$; and $w_{s}(\sin \theta<0.28)=(\sin \theta / 0.28)^{3}$, $w_{S}(\sin \theta>0.38)=(0.38 / \sin \theta), w_{S}(0.28<\sin \theta<$ $0.38)=1 \cdot 0$. Final refinement parameters are given

Table 1. Data collection summary

Temperature (${ }^{\circ} \mathrm{C}$)
Diffractometer
X-radiation (\AA)
Monochromator
Scan method
2θ scan width $\left({ }^{\circ}\right)$
Scan rate (deg min $^{-1}$) Background
$2 \theta_{\max }\left({ }^{\circ}\right)$
Maximum scan time (s)
Aperture (mm) Intensity decrease (\%) Measured refiexions Averaged reflexions Mean discrepancy on I(\%)
Observed reflexions Unobserved reflexions $\sigma(I)$ based on Linear absorption coefficient $\left(\mathrm{cm}^{-1}\right)$ Corrections

20 (1)
CAD-4 automatic 4-circle
Mo Ka ($\bar{\lambda}=0.71069$)
Graphite crystal
$\omega-2 \theta$ (moving-crystal movingcounter)
$0.8+0.2 \tan \theta$
$\min .3 .4$, max. 20.1
$\frac{1}{4}$ of the scan time at each of the scan limits
50
30
$2.5+0.9 \tan \theta$
2.5
$1663(\pm h, \pm k, \pm$)
292
7.8 for 1509 reflexions

277
$15[I<3 \cdot 0 \sigma(I)]$
Counting statistics
111.5 for Mo K α

Lp and absorption for a sphere
in Table 2. The atomic scattering factors used for neutral Sn , As and F were those of Cromer \& Mann (1968). The real and imaginary parts of the dispersion correction for Sn , As and F were those of Cromer \& Liberman (1970). An isotropic

Table 2. Refinement summary

Final refinement cycle

$R=\Sigma\|\Delta F\| / \Sigma\left\|F_{o}\right\|$	0.039
$R_{w}=\left[\Sigma w(\Delta F)^{2} / \Sigma w F_{o}^{2}\right]^{1 / 2}$	0.039
Average shift/error	0.038
Maximum shift/error	1.056
Data (m)-to-variable (n) ratio	6.5
$\left[\Sigma w(\Delta F)^{2} /(m-n)\right]^{1 / 2}$	3.3

Final difference map
Maximum $\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$
Extinction parameter (g)
extinction parameter (g) was also included in the final stage of the refinement (Larson, 1967). All calculations were carried out on the CDC Cyber 72 computer at RRC Ljubljana. The X-RAY 72 system of crystallographic programs (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) was used.

Table 3 lists the final fractional coordinates and anisotropic thermal factors.*

Discussion. The crystal structure is built up of discrete cyclic ($\mathrm{Sn}-\mathrm{F})_{3}^{3+}$ cations and AsF_{6}^{-}anions; thus the structural formula of the complex is better represented by $(\mathrm{SnF})_{3} .3 \mathrm{AsF}_{6}$. A stereoscopic view of the cation with the environment of the Sn atom is shown in Fig. 1.

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32048 (3 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 3. Final fractional coordinates and thermal parameters with standard deviations in parentheses
Coordinates are multiplied by 10^{4}. The anisotropic temperature factors are expressed in the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+2 U_{12} h k a^{*} b^{*}+\cdots\right)\right]$ in units of $10^{-4} \AA^{2}$.

	Position	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sn	$9(e)$	$2601(1)$	0	$\frac{1}{2}$	$326(7)$	$=2 U_{12}$	$465(8)$	$205(5)$	$3(3)$	$=2 U_{13}$
$\mathrm{As}(1)$	$3(a)$	0	0	0	$=2 U_{12}$	$=2 U_{12}$	$376(14)$	$171(5)$	0	0
$\mathrm{As}(2)$	$6(c)$	0	0	$2989(1)$	$=2 U_{12}$	$=2 U_{12}$	$337(10)$	$181(4)$	0	0
$\mathrm{~F}(1)$	$18(f)$	$851(26)$	$1730(16)$	$592(6)$	$1282(112)$	$594(64)$	$694(49)$	$261(78)$	$-8(84)$	$-291(50)$
$\mathrm{F}(2)$	$18(f)$	$1538(13)$	$1512(13)$	$2414(5)$	$627(58)$	$621(59)$	$497(39)$	$242(48)$	$159(40)$	$178(40)$
$\mathrm{F}(3)$	$18(f)$	$39(11)$	$1558(10)$	$3588(5)$	$617(48)$	$398(41)$	$499(38)$	$305(37)$	$-2(35)$	$-51(32)$
$\mathrm{F}(4)$	$9(e)$	$1760(12)$	$=x$	$\frac{1}{2}$	$398(41)$	$=U_{11}$	$416(45)$	$219(45)$	$-3(20)$	$=-U_{13}$

Fig. 1. A stereoscopic view of the $(\mathrm{Sn}-\mathrm{F})_{3}^{3+}$ cation with the coordination sphere around the Sn atom. The atoms are represented by thermal ellipsoids drawn at the 50% probability level (Johnson, 1965).

Fig. 2. A stereoscopic view of the unit cell viewed approximately along [110].

Table 4. Some important interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses
(a) $(\mathrm{Sn}-\mathrm{F})_{3}^{3+}$ environment

$\mathrm{Sn}-\mathrm{F}(4)^{a, b}$	$2.097(8)$	$\mathrm{F}(4)-\mathrm{Sn}-\mathrm{F}(3)^{b}$	$74.2(2)$
$\mathrm{Sn}-\mathrm{F}(3)^{b, c}$	$2.587(8)$	$\mathrm{F}(4)-\mathrm{Sn}-\mathrm{F}(4)^{b}$	$83.0(4)$
$\mathrm{Sn}-\mathrm{F}(1)^{d, e}$	$2.849(9)$	$\mathrm{F}(3)^{b}-\mathrm{Sn}-\mathrm{F}(3)^{c}$	$136.0(3)$
$\mathrm{Sn}-\mathrm{F}(2)^{d, e}$	$3.048(5)$	$\mathrm{Sn}-\mathrm{F}(4)-\mathrm{Sn}^{s}$	$157.0(3)$

(b) AsF_{6} octahedron (D_{3} symmetry)

$\mathrm{As}(1)-\mathrm{F}(1)^{a, b, f, g, h, i}$	$1.696(11)$
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(1)^{f}$	$88.4(7)$
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(1)^{g}$	$92.1(8)$
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(1)^{h}$	$90.9(7)$
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(1)^{i}$	$179.2(9)$

(c) AsF ${ }_{6}$ octahedron (C_{3} symmetry)

$\operatorname{As}(2)-\mathrm{F}(2)^{a, b, f}$	$1.701(8)$
$\operatorname{As}(2)-\mathrm{F}(3)^{a, b, s}$	$1.733(7)$
$\mathrm{F}(2)-\operatorname{As}(2)-\mathrm{F}(3)$	$90.1(5)$
$\mathrm{F}(2)-\operatorname{As}(2)-\mathrm{F}(2) s$	$90.2(5)$
$\mathrm{F}(2)-\operatorname{As}(2)-\mathrm{F}(3)^{b}$	$90.6(5)$
$\mathrm{F}(3)-\operatorname{As}(2)-\mathrm{F}(3)^{b}$	$89.1(5)$
$\mathrm{F}(2)-\operatorname{As}(2)-\mathrm{F}(3)^{s}$	$179.1(4)$.

Symmetry code

(a)	x,	y,	z	(f)	$-y$,	$x-y$,	z
(b)	$y-x$,	$-x$,	z	(g)	y,	x,	$-z$
(c)	y,	x,	$1-z$	(h)	$-x$,	$y-x$,	$-z$
(d)	$\frac{2}{3}-y$,	$\frac{1}{3}-y+x$,	$\frac{1}{3}+z$	(i)	$x-y$,	$-y$,	$-z$
(e)	$\frac{1}{3}-x$,	$-\frac{1}{3}-x+y$,	$\frac{2}{3}-z$				

Fig. 2 provides a stereo view of the packing in the unit cell. Some important interatomic distances and angles are given in Table 4.

The cation $(\mathrm{Sn}-\mathrm{F})_{3}^{3+}$ has $D_{3 h}$ symmetry with a $\mathrm{Sn}-\mathrm{F}(4)$ distance of 2.097 (8) \AA and the angles $\mathrm{F}(4)-$ $\mathrm{Sn}-\mathrm{F}(4)$ and $\mathrm{Sn}-\mathrm{F}(4)-\mathrm{Sn}$ are 83.0 (4) and $157.0(3)^{\circ}$ respectively. Each Sn atom is surrounded within $3 \cdot 1 \AA$ by eight F atoms. Four [two $\mathrm{F}(4)$ at 2.097 and two $\mathrm{F}(3)$ at $2.587 \AA$] are at one side of the Sn atom in a nearly square-pyramidal arrangement. The distance $2.097 \AA$ within the cation is very close to the $2.12 \AA$ expected for a pure covalent $\mathrm{Sn}-\mathrm{F}$ bond, and the value $2.587 \AA$ is not far off the value $2.55 \AA$ expected for a
pure ionic bond between Sn and F (Wells, 1975). On the opposite side of the Sn there are four more distant F atoms [two $\mathrm{F}(1)$ at 2.849 and two $\mathrm{F}(2)$ at $3.048 \AA$]. There are two different kinds of AsF_{6} octahedra in the structure. One of these, around $\mathrm{As}(1)$, exhibits D_{3} symmetry with six equivalent $\mathrm{As}(1)-\mathrm{F}(1)$ distances of 1.696 (11) \AA and angles within $88 \cdot 4$ (7)- $92 \cdot 1(8)^{\circ}$. The other, around $\mathrm{As}(2)$, possesses C_{3} symmetry with three equivalent $\mathrm{As}(2)-\mathrm{F}(2)$ and $\mathrm{As}(2)-\mathrm{F}(3)$ distances of 1.701 (8) and 1.733 (7) \AA respectively. This distortion is probably due to the ionic interaction of the AsF_{6}^{-} anion with the $(\mathrm{Sn}-\mathrm{F})_{3}^{3+}$ cation. The angles in the second octahedron vary from $89 \cdot 1$ (5) to $90 \cdot 6(5)^{\circ}$.

We are indebted to B. Frlec, J. Stefan Institute, Ljubljana, for useful discussions. The financial support of the Research Community of Slovenia is also gratefully acknowledged.

References

Bartlett, N., Gennis, M., Gibler, D. D., Morrell, B. K. \& Zalkin, A. (1973). Inorg. Chem. 12, 1717-1721.
Birchall, T., Dean, P. A. W. \& Gillespie, R. J. (1971). J. Chem. Soc. (A), pp. 1777-1782.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gantar, D. (1975). M.Phil. Thesis, Univ. of Ljubljana, Ljubljana, Yugoslavia.
International Tables for X-ray Crystallography (1959). Vol. II, pp. 302-303. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The X-RAY system - version of June 1972. Technical Report TR-192, Computer Science Center, Univ. of Maryland.
Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., pp. 236-259. Ox ford: Clarendon Press.
Zachariasen, W. H. (1948). J. Amer. Chem. Soc. 70, 2147-2151.

